

RAK-003-1014008 Seat No.

B. Sc. (Sem. IV) (CBCS) (W.E.F. 2016) Examination March / April - 2019

MATH-04(A): Mathematics

(Linear Algebra & Differential Geometry Theory)
[New Course]

Faculty Code: 003

Subject Code: 1014008

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instruction: All questions are compulsory.

1 (a) Answer the following in brief:

4

- (1) Define Linear dependence.
- (2) Define Improper subspace.
- (3) Define Polynomial space $P_n(R)$.
- (4) If $V = R^2$, for (x, y), $(w, z) \in V$ and $\alpha \in R(x, y) + (w, z) = (x + w, y + z)$ and $\alpha(x, y) = (\alpha x, y)$, if $\alpha = 2$, $\beta = -2$ and (x, y) = (1, 4), then find the value of $(\alpha + \beta)(x, y)$.
- (b) Answer any one question:

- (1) Check whether V is vector space, where $V = \{(x,y) : x,y \in R\} \text{ for } (x_1,y_1), (x_2,y_2) \in V$ $(x_1,y_1) + (x_2,y_2) = (x_1,y_1) \text{ and for }$ $\alpha \in R \ \alpha(x_1,y_1) = (\alpha x_1, \alpha y_1).$
- (2) Check whether the sub sets $\{(1,1,-1),(1,0,1),(1,1,0)\}$ of vector space \mathbb{R}^3 and L.D. or L.I.

(c) Answer any one question:

3

- (1) Prove that intersection of any two subspace of vector space is also a subspace.
- (2) Check whether the set $W = \{(x, y, z) : x + y + z = 0, x, y, z \in R\} \text{ is subspace of } R^3.$
- (d) Answer any one question:

5

- (1) If a vector $\overline{v_k} (1 \le k \le n)$ of set $\{\overline{v_1}, \overline{v_2}, \dots, \overline{v_n}\}$ is a linear combination of remaining vectors $\overline{v_1}, \overline{v_2}, \dots, \overline{v_{k-1}}, \overline{v_{k+1}}, \dots, \overline{v_n}$, then prove that SP $\{\overline{v_1}, \overline{v_2}, \dots, \overline{v_n}\} = SP (\overline{v_1}, \overline{v_2}, \dots, \overline{v_{k-1}}, \overline{v_{k+1}}, \dots, \overline{v_n}).$
- (2) Check whether V is vector space, where $V = \{(x, y) : x, y \in R \ x > 0, y > 0\}$ for $(x_1, y_1), (x_2, y_2) \in V$ $(x_1, y_1) + (x_2, y_2) = (x_1 x_2, y_1 y_2)$ and for $\alpha \in R$ $\alpha(x_1, y_1) = (x_1^{\alpha}, y_1^{\alpha})$.
- 2 (a) Answer the following in brief:

- (1) Define Dimension.
- (2) Write the standard base of $M_2(R)$.
- (3) Define Base.
- (4) What is the dimension of $P_n(R)$?

(b) Answer any one question:

- 2
- (1) If W is subspace of finite dimensional vector space V. Show that $\dim W \leq \dim V$.
- (2) Check whether the subset $A = \{(0,1,2,1), (1,2,-1,1), (2,-3,1,0), (4,-2,-7,-5)\} \text{ of } R^4 \text{ are basis of } R^4.$
- (c) Answer any one question:

3

- (1) If $\{e_1, e_2, e_3\}$ is standard base of R^3 then show that $\{e_1 + e_2, e_2 + e_3, e_3 + e_1\}$ is also base of R^3 .
- (2) Prove that $\{1-x, 1+x, 1-x^2\}$ is base of $P_2(R)$.
- (d) Answer any one question:

5

- (1) If $W_1 = \{(x_1 + x_3 x_4) \setminus x_1 + x_3 x_4 = 0\}$ and $W_2 = \{(x_1, x_2, x_3, x_4) \setminus x_1 + 2x_2 = 0\}$ are subspace of R^4 . Find $\dim W_1$, $\dim W_2$, $\dim (W_1 \cap W_2)$ and show that $W_1 + W_2 = R^4$.
- (2) Prove that the set $A = \{(1,2,1), (2,1,0), (1,-1,2)\}$ forms a basis for R^3 . Find coordinate (1,1,-1) with respect to this base.
- 3 (a) Answer the following in brief:

- (1) Define Zero linear transformation.
- (2) Define Linear function.
- (3) Define Nilpotent linear transformation.
- (4) Define Kernel of a linear transformation.

(b) Answer any one question:

2

- (1) Find linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$ such that $R(T) = SP\{(1,0,1), (1,2,3)\}$.
- (2) Find N_T and n(T) for the linear transformation $T: R^3 \to R^2$, T(x, y, z) = (x y + z, x + y z), $\forall (x, y, z) \in R^3$.
- (c) Answer any one question:

3

- (1) For linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$, $T(a,b,c) = (a-b+c,b-c,c), \ \forall (a,b,c) \in \mathbb{R}^3, \text{ find } T^{-1}$ if exists.
- (2) Prove that composition of two linear transformation is again a linear transformation.
- (d) Answer any one question:

5

- (1) State and prove Rank-Nullity Theorem.
- (2) Prove that L(U,V) is a vector space over R with respect to addition and scalar multiplication of linear transformation.
- 4 (a) Answer the following in brief:

- (1) If $\dim U = 4$, $\dim V = 3$, then find the $\dim L(U,V)$.
- (2) Define Eigen value of a linear transformation.
- (3) Define Dual of vector space.
- (4) Define Adjoint of linear transformation.

- (b) Answer any one question:
 - (1) $B_1 = \{1, x, x^2\}$ and $B_2 = \{1, x, x^2, x^3\}$ are bases of $P_2(R)$ and $P_3(R)$ respectively. Find the linear transformation $T: P_2(R) \to P_3(R)$ related to the matrix

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}.$$

- (2) Let $T: \mathbb{R}^2 \to \mathbb{R}^2$, T(x,y) = (x,-y), $\forall (x,y) \in \mathbb{R}^2$ and $B_1 = \{(1,1), (1,0)\}$ and $B_2 = \{(2,3), (4,5)\}$. Then find $[T; B_1, B_2]$.
- (c) Answer any one question:
 - (1) A linear transformation $T: U \to V$ is defined by $T(u) = a.u, \forall u = (x_1, x_2, x_3) \in U$ and $a = (a_1, a_2, a_3)$ is constant vector. U and V have standard Euclidian bases find $[T; B_1, B_2]$.
 - (2) A linear transformation $T: P_2(R) \to P_3(R)$ is defined by $T(p(x)) = \int_0^x p(x) dx$. $B_1 = \{1, x, x^2\}$ and $B_2 = \{1, x, x^2, x^3\}$ are bases of $P_2(R)$ and $P_3(R)$ respectively find $[T; B_1, B_2]$.

2

(d) Answer any one question:

5

(1) Find the Eigen value and Eigen vector for the linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^3$,

$$T(a,b,c) = (-2b-2c, -2a-3b-2c, 3a+6b+5c),$$

 $\forall (a,b,c) \in \mathbb{R}^3$ by considering the standard basis of \mathbb{R}^3 .

- (2) Let $T: V \to V$ be a linear transformation and let B be any basis of V. Then T is singular if and only if $\det([T; B]) = 0$.
- 5 (a) Answer the following in brief:
 - (1) Define Double point.
 - (2) Define Singular point.
 - (3) Define Point of inflexion.
 - (4) Find the radius of curvature of the curve $s = 4a \sin \psi$.
 - (b) Answer any one question:

2

4

- (1) Find the radius of curvature of the curve $s = c \cosh \frac{x}{c}$.
- (2) Prove that $y = \log x$ is convex upward everywhere.
- (c) Answer any one question:

- (1) Find the all asymptotes of the curve $4x^3 3xy^2 y^3 + 2x^2 xy y^2 = 1.$
- (2) Find the radius of curvature at origin for the curve $x^3 + y^3 = 3axy$ using Newton's method.

(d) Answer any one question:

- (1) Show that radius of curvature of any point on the cardiod $r = a(1 + \cos \theta)$ is $\frac{2}{3}\sqrt{2ar}$ and prove that $\frac{\rho^2}{r}$ is constant.
- (2) Find the position and nature of double points of the curve $x^4 2ay^3 3a^2y^2 2a^2x^2 + a^4 = 0$.